
GPU-based Acceleration of PyHARK

*Zirui LIN1, Katsutoshi ITOYAMA1,2, Kazuhiro NAKADAI1, Masayuki TAKIGAHIRA2,
Haris GULZAR3, Takeharu EDA3, Monikka Roslianna BUSTO3, Hideharu AMANO4

1 Tokyo Institute of Technology, 2 Honda Research Institute Japan,
3 Nippon Telegraph and Telephone Corporation, 4 Keio University.

1. Introduction
Since its release in 2008, the open-source robot au-

dition software HARK [1, 2] has been continuously
developed. HARK provides a programmable platform
for users to build robot audition systems on demand.
PyHARK, as a new feature of HARK version 3.4 [3],
provides a Python interface for HARK. It allows users
to use HARK functions through Python programs
and utilize commonly used development tools such as
Jupyter Notebook and Visual Studio Code to enhance
programming efficiency.

This paper introduces the GPU-based acceleration
of PyHARK, which aims to reduce the processing time
of PyHARK further. We deployed GPU-based accel-
eration on functions involving matrix operations of
sound source localization (SSL) and sound source sep-
aration (SSS) modules of PyHARK, the bottle of Py-
HARK processing. We elaborate on our implemen-
tation methods and provide experiment results. In
the results, for 12.5 second, 60-channel audio data,
NVIDIA A100 GPU in a server configured with AMD
EPYC 7352 CPU achieved 1.6× and 1.2× accelera-
tion for SSL and SSS, while Jetson AGX Xavier is
2.0× and 1.1×.

2. Related Work
Research in many fields has attempted to use GPUs

to accelerate data processing. This section provides
an overview of related work, focusing on efforts to im-
prove the processing time of audio signal processing,
including HARK.

The acceleration of HARK has been studied. Hou
et al. [4] proposed a method to deploy the HARK
module of SSL on FPGA. They partially realized the
acceleration of sound source localization. Similarly,
Qin et al. [5] proposed a method to deploy the SSS
module in HARK on an FPGA, achieving high per-
formance and low power consumption computation.
However, the computing resources of FPGA are rela-
tively limited. According to [5], due to the limita-
tion of FPGA resources, they almost used the en-
tire FPGA to implement four sound source separa-
tion cores. DSP resources became the bottleneck,
making it difficult to achieve large-scale processing.
However, GPU usually has a more significant number
of processing units and memory capacity, enabling it
to attain larger-scale processing. At the same time,
GPU is more common in general-purpose computers
than FPGA. Therefore, acceleration using GPU has

User program (Python3)

pybind11
A

u
d

io
S

tre
a

m

F
ro

m
M

e
m

o
ry

M
u

ltiF
F

T

L
o

c
a
liz

e
M

U
S

IC

G
H

D
S

S

Ubuntu

Fig. 1: Processing Flow of PyHARK

the potential to benefit a broader user base than using
FPGA.

Some studies have used GPU to improve process-
ing efficiency in audio signal processing. For exam-
ple, Huang et al. [6] proposed an optimized real-time
MUSIC (MUltiple SIgnal Classification) algorithm for
SSL that uses a CPU-GPU architecture for process-
ing. Their algorithm improvement adapts to the char-
acteristics of CPU and GPU and dramatically im-
proves the algorithm’s performance through collab-
orative computing. However, they only verified their
method on the 4-channel audio signal. When more
microphones are used, they need to optimize it sepa-
rately, such as a 60-channel microphone array.

Raj et al. [7] proposed a GPU-accelerated guided
SSS for meeting transcription. This implementation
was nearly 300 times faster than the original imple-
mentation on the CHiME-6 benchmark, eliminating
the computational bottleneck of this technique. How-
ever, they use GSS(Guided Source Separation) algo-
rithm for SSS, which is different from our target algo-
rithm, GHDSS (Geometric High-order Dicorrelation-
based Source Separation), and thus other considera-
tions will be necessary.

Our work is the first dedicated GPU-based acceler-
ation of PyHARK and simultaneously supports SSL
and SSS modules of PyHARK.
3. Architecture of PyHARK
3·1 Processing Flow of PyHARK

Fig. 1 illustrates the structure of the offline batch
processing version PyHARK. It has four layers: user
program, pybind, HARK module, and operating sys-
tem. The user program layer is a programming plat-
form for users. They can write Python programs in
this layer to use the functions of PyHARK to realize
audio data processing. The pybind layer enables the

AudioStreamFromWave

MultiFFT

Frame Segmentation

Read Data

Read Transfer Function

Add Correlation

Normalize Correlation

Finding Maximum

Abstract Value of Martix

Standard Eigen Value

Decomposition

Calculate Average Power

Find Source

Finished?
No

Read Transfer Function

Yes

Update Separation

Matrix

Read Data

Finished?
No

Yes

Start

End

LocalizeMUSIC GHDSS

Fig. 2: Example of PyHARK Program

user program layer to call the modules of PyHARK as
nodes whose source code is designed at the C/C++
level. Loops between pybind and nodes mean that for
every node, offline batch processing version PyHARK
does frame-by-frame processing automatically, and
this is controlled in pibind layer. The HARK modules
layer contains various audio processing modules, in-
cluding SSL and SSS, implemented in C/C++. Users
can use these modules flexibly according to the needs
of the audio processing task. The operating system
layer is the base of the PyHARK system. It provides
the runtime environment for the above three layers
and handles system-level tasks such as memory man-
agement, process scheduling, and hardware interac-
tion.
3·2 Example of PyHARK Program

Fig. 2 shows an example of a PyHARK program
that performs SSL and SSS. For SSL, we used SEVD-
based (Standard Eigen Value Decomposition) MUSIC
algorithm, which has been implemented in the Local-
izeMUSIC node. For SSS, we used GHDSS algorithm
, which has been implemented in the GHDSS node.
The PyHARK program starts with reading waveform
data and then segmenting data into frames. Next,
the program uses a MultiFFT node to convert the
time domain signal into a frequency domain signal.
The output of this node is an input of LocalizeMU-
SIC and GHDSS nodes. Next, it comes to the Lo-
calzeMUSIC node. First, the node reads the transfer
function. Then it calculates normalized correlation
matrices from the input audio data. After that, the
node localizes sound sources by performing SEVD for
the correlation matrix, calculating the MUSIC spatial
spectrum from eigenvalues, eigenvectors, and steering
vectors, and finding peaks in the MUSIC spectrum to
estimate sound source directions. At last, the esti-
mated sound source directions and the audio data are
sent to the GHDSS node for separation. The GHDSS
node uses the results of the LocalizeMUSIC node and
the input audio signal to estimate a separation ma-
trix. The node updates a separation matrix, which
can be applied to the input audio signal to store the

Table 1: Processing Time of Nodes and Functions
of PyHARK on Jetson AGX Xavier for 60-Channel,
12.5s Audio Data Using CPU

Level Node Name Time (s) Percentage
Node AudioStreamFromWave 0.118 0.036%
Node MultiFFT 2.682 0.83%
Node LocalizeMUSIC 241.562 74.70%

Sub Function of
LocalizeMUSIC

Sub Function Read Transfer Function 86.396 26.72%
Sub Function Add Correaltion 2.233 0.69%
Sub Function Normalize Correlation 0.046 0.014%
Sub Function Max of Abs Value 0.130 0.04%

Sub Function Standard Eigen
Value Decomposition 14.418 4.46%

Sub Function Calculate Average Power 119.813 37.05%
Sub Function others 18.565 5.74%

Node GHDSS 78.947 24.41%
Sub Function of

GHDSS

Sub Function Initialize Transfer
Function (GHDSS) 60.709 18.77%

Sub Function Read Data 4.919 1.52%

Sub Function Update Separation
Matrix 9.721 3.00%

Sub Function others 3.598 1.11%
Program 323.385 100%

separated signal in wav files. At last, if the processing
of all data has been finished, the program will end.

4. The Bottleneck of PyHARK Pro-
cessing

Table 1 shows the PyHARK program performance
test result when processing 60-channel, 12.5s audio
data on Jetson AGX Xavier using CPU. In this ta-
ble, we can see that The execution time of node Lo-
calizeMUSIC and GHDSS accounted for 74.70% and
24.41% of the total time, respectively. In the entire
program, functions involving matrix operations take
much time. They are functions of Add Correlation,
Normalize Correlation, Finding Maximum Abstract
Value of Matrices, Standard Eigen Value Decompo-
sition, Calculate Average Power, and Update Separa-
tion Matrix. The total running time of these functions
accounts for 45.25% of the entire program, while the
total running time of parts of the reading transfer
function is 45.49%. However, reading transfer func-
tion happens only when the program is executed, not
every time frame, and this can be ignored even if it
takes time. Therefore, we can think of processing in-
volving matrix operations as the performance bottle-
neck of PyHARK. Optimizing this bottleneck is the
focus of this paper.

5. Proposed Method
To optimize the bottleneck caused by matrix oper-

ations, we propose deploying them on NVIDIA GPU
using CUDA to reduce processing time.
5·1 Design of Parallel Computing

For all functions with matrix operations in Local-
izeMUSIC and GHDSS nodes, we can divide them
into four types according to parallelism, design paral-
lel computing for the four types separately, and allo-

Table 2: Dimensions of Input and Output Matrices of Functions and Allocation of Threads Blocks for Functions:
channels indicates the number of microphones, pslength indicates sampling points of frequency, win_size indi-
cates the size of the frequency range used in localization, num_src indicates the size of the number of sources
found in localization, height_num, direction_num, and range_num indicate the coordinates of the sound source
on the three-dimensional coordinate axis.

Function Dimension of
Input Matrix Dimension of Output Matrix Block Size

(block.x, block.y) Number of Blocks

Add Correlation pslength×channels×win_size calc_freq×channels×channels (32, 4)
(

channels−1

block.x + 1
)
×

(
channels−1

block.y + 1
)
× calc_freq

Normalize Correlation calc_freq×channels×channels calc_freq×channels×channels (32, 4)
(

channels−1

block.x + 1
)
×

(
channels−1

block.y + 1
)
× calc_freq

Max of Abs Value calc_freq×channels×channels calc_freq×channels×channels (32, 4) calc_freq

SEVD1 calc_freq×channels×channels calc_freq×channels×channels,
calc_freq×channels (32, 4)

(
channels−1

block.x + 1
)
×

(
channels−1

block.y + 1
)
× calc_freq

SEVD2 calc_freq×channels×channels,
calc_freq×channels

calc_freq×channels×channels,
calc_freq×channels (64, 1) channels×calc_freq

Calculate Average
Power

calc_freq×channels×channels,
calc_freq×channels height_num×direction_num×range_num (32, 4) height_num×direction_num×range_num

Update Separation
Martix channels × pslength num_src × pslength × channels (32,1) pslength+block.x−1

block.x

cate thread blocks with different strategies.
Parallelism across frequency bins × channels ×
channels. Each element in the matrix (channels ×
channels) of each frequency bin is computed indepen-
dently.

• Corresponding functions: Add Correlation, Nor-
malize Correlation, Max of Abs Value, SEVD1
(generating identity matrix).

Parallelism across frequency and channels.
There is only one dimension of parallelism in the ma-
trix of each frequency bin. It means that in each
frequency bin’s matrix, each channel’s rows can be
computed independently.

• Corresponding functions: SEVD2 (eigenvalue
calculation, eigenvector calculation and sorting).

Parallelism only across frequency bin. Only
the matrix of each frequency bin can be computed
independently.

• Corresponding functions: Update Separation
Matrix GHDSS.

Parallelism across height × direction × range
× channels × channels .

Rows for each channel of the matrix on the three-
dimensional coordinate points can be computed inde-
pendently.

• Corresponding functions: Calculate Average
Power.

5·2 Implementation of Parallel Computing
For the first type, the computation of each fre-

quency bin is allocated to thread blocks, where each
thread within the block corresponds to the calcula-
tion of each element in the matrix. For the second
type, the computation of each frequency bin is allo-
cated to blocks, where each thread within the block
corresponds to the computation of each row corre-
sponding to the channel. For the third type, the com-
putation of each frequency bin is allocated to a single
thread. For the fourth type, the computation of a
point on the three-dimensional coordinate axis is as-
signed to blocks, where each thread within the block

corresponds to the computation of each element in the
matrix. In this situation, if the number of paralleliz-
able tasks in a thread block exceeds the number of
threads, each thread will process multiple tasks.

Table 2 shows the dimensions of the input and out-
put matrices for each function and the allocation of
thread blocks. The number of blocks is designed to
try to cover all parallel units.

6. Evaluation Experiments
To validate our proposed method, we conduct ex-

periments to measure the processing time of nodes of
LocalizeMUSIC and GHDSS on two CPUs, NVIDIA
A100, and Jetson AGX Xavier.
6·1 Experimental Condition

We conduct experiments on two distinct types of
devices: a server configured with an NVIDIA A100
GPU and AMD EPYC 7352 CPU, and Jetson AGX
Xavier, an embedded GPU device equipped with 8-
core NVIDIA Carmel ARM v8.2 CPU. The NVIDIA
A100 GPU, as a powerful server-grade GPU, rep-
resents high-performance computing environments.
Conversely, as an embedded device, the Jetson AGX
Xavier represents edge computing scenarios where re-
sources are more limited. Thus, by evaluating our pro-
posed method on these two devices, we try to prove
that GPU-accelerated PyHARK is adaptable to vari-
ous scenarios, such as cloud computing, edge comput-
ing and IoT devices.

In experiments, we measure the processing time of
the LocalizeMUSIC and GHDSS nodes with and with-
out GPU acceleration to evaluate the effectiveness of
GPU-based acceleration of PyHARK. We conduct ex-
periments on each device, processing 8-channel, 62.05
seconds audio data, and 60-channel, 12.5 seconds data
respectively. Experiments were conducted 10 times
under each condition.
6·2 Experimental Results

Fig. 3 shows that in all cases, the processing time of
the nodes with GPU acceleration is less than without
GPU acceleration. For 8-channel, 62.5s data, A100
achieved 1.1× and 1.3× acceleration for SSL and SSS,

AMD EPYC 7352 A100 NVIDIA Carmel
Arm v8.2 CPU

Jet AGX Xavier
0

1

2

3

4

5

6

7

8
Ti

m
e

(s
)

1.806 1.707

6.883
5.924

(a) LocalizeMUSIC with 8-channel, 62.05s data

AMD EPYC 7352 A100 NVIDIA Carmel
Arm v8.2 CPU

Jet AGX Xavier
0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

1.967
1.470

7.132

5.940

(b) GHDSS with 8-channel, 62.05s data

AMD EPYC 7352 A100 NVIDIA Carmel
Arm v8.2 CPU

Jet AGX Xavier
0

50

100

150

200

250

Ti
m

e
(s

)

76.564
46.421

241.562

122.089

(c) LocalizeMUSIC with 60-channel, 12.5s data

AMD EPYC 7352 A100 NVIDIA Carmel
Arm v8.2 CPU

Jet AGX Xavier
0

20

40

60

80

Ti
m

e
(s

)

26.425 22.757

78.947
71.151

(d) GHDSS with 60-channel, 12.5s data

Fig. 3: Results of Evaluation Experiments

while Jetson AGX Xavier is 1.2× and 1.2×. For 60-
channel, 12.5s data, A100 achieved 1.6× and 1.2× ac-
celeration for SSL and SSS, while Jetson AGX Xavier
is 2.0× and 1.1×.

Therefore we can consider the GPU-based acceler-
ation of PyHARK successfully reduced the processing
time of SSL and SSS for the processing of 8-channel
and 60-channel audio data on NVIDIA A100 server
and Jetson AGX Xavier.

7. Conclusion
This paper presents GPU-based acceleration of Py-

HARK to reduce the processing time further. Evalu-
ation experiments show that GPU-based acceleration
successfully reduces the processing time of nodes of
SSL and SSS of PyHARK, thereby reduces the over-
all running time of the PyHARK program. Experi-
ment results also demonstrate that GPU-based accel-
eration of PyHARK is effective on these two devices
of different scales, making GPU-accelerated PyHARK
adaptable to different application scenarios.

Acknowledgement
This work was supported by JST CREST JP-

MJCR19K1.

References

[1] K. Nakadai, T. Takahashi, H. G. Okuno, H. Naka-
jima, Y. Hasegawa, and H. Tsujino. Design and
implementation of robot audition system ’hark’.
Advanced Robotics, 24:739–761, 2010.

[2] 中臺一博 and 奥乃博. ロホット聴覚用オーフン
ソースソフトウエア hark の展開. デジタルフラ
クティス, 2(2):133–140, 2011.

[3] 中臺一博, 糸山克寿, and 瀧ヶ平将行. Pyhark:
Hark のオンライン・オフライン処理用 python
パッケージ. 人工知能学会第二種研究会資料,
2022(Challenge-061):04, 2022.

[4] Zhongyang Hou, Kaijie Wei, Hideharu Amano,
and Kazuhiro Nakadai. An fpga off-loading of hark
sound source localization. In 2022 Tenth Interna-
tional Symposium on Computing and Networking
Workshops (CANDARW), pages 236–240. IEEE,
2022.

[5] Ziquan Qin, Kaijie Wei, Hideharu Amano, and
Kazuhiro Nakadai. Low power implementation
of geometric high-order decorrelation-based source
separation on an fpga board. In 2023 IEEE Sympo-
sium in Low-Power and High-Speed Chips (COOL
CHIPS), pages 1–6. IEEE, 2023.

[6] Qinghua Huang and Naida Lu. Optimized real-
time music algorithm with cpu-gpu architecture.
IEEE Access, 9:54067–54077, 2021.

[7] Desh Raj, Daniel Povey, and Sanjeev Khu-
danpur. Gpu-accelerated guided source separa-
tion for meeting transcription. arXiv preprint
arXiv:2212.05271, 2022.

	head_text_0: RSJ2023AC1D4-07
	footer_text_0: 第41回日本ロボット学会学術講演会（2023年9月11日〜14日）
	head_text_1: RSJ2023AC1D4-07
	footer_text_1: 第41回日本ロボット学会学術講演会（2023年9月11日〜14日）
	head_text_2: RSJ2023AC1D4-07
	footer_text_2: 第41回日本ロボット学会学術講演会（2023年9月11日〜14日）
	head_text_3: RSJ2023AC1D4-07
	footer_text_3: 第41回日本ロボット学会学術講演会（2023年9月11日〜14日）

