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Bilateral Control of Master-Slave
Manipulators for Ideal Kinesthetic
Coupling—Formulation and Experiment
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Abstract— In this paper, the analysis and design of master-
slave teleoperation systems are discussed. The goal of this paper
is to build a superior master-slave system that can provide good
maneuverability, We first analyze a one degree-of-freedom system
including operator and object dynamics. Second, some ideal
responses of master-slave systems are defined and a quantitative
index of maneuverability is given, based on the concept of ideal
responses. Third, we propose new control schemes of master-
slave manipulators that provide the ideal kinesthetic coupling
such that the operator can maneuver the system as though he/she
were directly manipulating the remote object himself/herself. The
proposed control scheme requires accurate dynamic models of
the master and slave arms, but neither parameters of the remote
object nor the operator dynamics is necessary. Last, the proposed
control scheme is introduced to a prototype master-slave system
and the experimental results show the validity of the proposed
scheme.

I. INTRODUCTION

ASTER-SLAVE SYSTEMS have been applied to many

areas since the 1960°s when the first master-slave
manipulator was developed [1], [2]. However, there has been
little improvement in the control schemes of master-slave
manipulators. The maneuverability of the current master-
slave systems seems still far from satisfactory. Very recently,
however, new control schemes aimed at high maneuverability
have been proposed [3]-{6].

Certainly, the maneuverability of master-slave systems de-
pends upon the quality of the mechanical design of ma-
nipulators. But the quality of control schemes also affects
the maneuverability of the system. The goal of this paper
is to build a superior master-slave system that can pro-
vide good maneuverability. There have been few serious
discussions about how to evaluate the maneuverability of the
system quantitatively. One of the problems is that since the
“maneuverability” of the system is an intuitive property for
human operators, it would be difficult to evaluate such an
intuitive property quantitatively. Raju [7], [9] evaluated the
maneuverability of master-slave systems experimentally. He
pointed out that there are various aspects for evaluating the
performance of the system. Another problem is that theoretical
analysis of master-slave system is complex because both the
operator dynamics and the object dynamics should be taken
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into account. Hannaford [11] also pointed out the importance
to consider the whole system including not only the arm
dynamics but also the object and operator dynamics for system
stability analysis.

To evaluate the system performance or to design new control
schemes, it would be meaningful to specify an ideal response
of master-slave systems. Dudragne et al. [3] mentioned that
the system should respond just like a virtual rod with infinitely
small mass and infinitely large stiffness connected between the
operator and remote site. They then specified an ideal state as
the case when the hybrid matrix, which was originally defined
in circuit theory, has a special value. This point was also
shown by Hannaford [12]. But they did not exactly discuss
to what extent the actual responses can reach the ideal one.
Tachi et al. [13] proposed the impedance type control scheme
in which an appropriate impedance model is introduced into
each arm as a target model, and they mentioned that the smaller
the impedance model is set, the closer the system response
reaches to the ideal one. Kazerooni [14] proposed a concept of
“telefunctioning,” i.e., an extension of telepresence introducing
appropriate functions between the master and slave sides. The
authors also discussed the way to evaluate maneuverability of
the system and proposed new bilateral control schemes that
can realize the ideal kinesthetic coupling [15]-[18].

This paper consists of two parts. In the first part, Sections II
through V, we propose a way to evaluate the maneuverability
of master-slave systems quantitatively. We define three ideal
responses of master-slave systems and give a quantitative per-
formance index of maneuverability, which examines how close
the actual responses are to the ideal one. In the second part,
Sections VI and VII, we propose a new control scheme that
provides the ideal kinesthetic coupling. The proposed scheme
is a sort of dynamic control approach and it requires accurate
dynamic models of the master and slave arms. However,
parameters of the operator dynamics and remote object are
not necessary. We show experimental results obtained by a
prototype master-slave system.

II. MODELING OF ONE DOF SYSTEM

A. Modeling of Arms, Object, and Operator

Most master-slave systems consist of arms with multiple
DOF. However, a one DOF system is considered in order to
make the problem simple.
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Fig. 2. Two-terminal-pair network.

The dynamics of master arm and slave arm is given by the
following equations:

Ts — fs =Ml + bels 2

where z,, and z, denote the displacements of the master
and slave arms. And m,, and b, represent mass and viscous
coefficient of the master arm respectively, whereas m, and b,
are those of the slave arm. In addition, f,,, denotes the force
that the operator applies to the master arm, and f, denotes the
force that the slave arm applies to the object. Actuator driving
forces of master and slave arms are represented by 7,,, and
Ts, Tespectively.

The dynamics of the object interacting with the slave arm
is modeled by the following linear system:

fs = MapZs + by + Cwls 3)

where m,,, b, and ¢,, denote mass, viscous coefficient, and
stiffness of the object, respectively. As the displacement of the
object is represented by x, in (3), we assume that the slave
arm is rigidly contacting with the object or firmly grasping the
object, in such a way that it may not depart from the object.

It is also assumed that the dynamics of the operator can
be approximately represented as a simple spring-damper-mass
system:

Top — fm = MopTm + bopTm + CopTm, “)

where mp, byp and c,, denote mass, viscous coefficient, and
stiffness of the operator respectively, whereas Top Means force
generated by the operator’s muscles. Similarly to (3), the
displacement of the operator is represented by z,, in (4)
because we assume that the operator is firmly grasping the
master arm and he/she never release the master arm during the
operation. It should be noted that the parameters of the operator
dynamics may change during the operation. For example,
Akazawa et al. [19] reported that b, and Cop are proportional
to the sum of the forces exerted by flexor and extensor muscles.
Therefore these parameters are not constant. Fig. 1 shows the
model of one DOF system.

B. Generalized Control Schemes of Master and Slave Arms

Let the following control schemes be considered as a general
expression of the actuator inputs:

d d? T
T = [Kmpm + K;npmd_t + Krlépmﬁ Kmfm] [fm:l
d d? Zs
- |:Kmps + K,{nPSE + K&psﬁ Kmfs] l:fs:, (5)

d d? Tm
o [Kspm  Kopm gy + Koom g3 K”f’"} [fmJ

d d? T

! L]
e K KTy K] [7] @
where  Koppm, Kpppms Kimpm and - Kpypm,  are  feedback

gains of the master arm position, velocity, acceleration
and force, whereas Kps, Kpppoy Kpryps and  Kpgs  are
gains of the slave arm position, velocity, acceleration, and
force, respectively. These eight gains specify the input 7.
Similarly, Kspm,K;pm,K;’pm,stm,Ksps,K;ps,K;’pg, and
K, specify the input ;. Equations (5) and (6) are extensions
of the formulation by Fukuda er al. [20]. Their original
formulation does not contain velocity and acceleration terms.
The conventional control schemes such as symmetric position
servo type, force reflection type, and force-reflecting servo
type can be represented as a special case of (5) and (6) with
appropriate gains.

In (5) and (6), we assume an ideal situation where all
the information (position, velocity, acceleration, and force) is
available and time delay due to the data transmission between
the master and slave sites is negligible. We also assume that the
scales of position and force are identical between the master
and slave sites. Practically speaking, however, we may face the
situations where the scales are different between the operator
and the remote object. It is possible to deal with such situations
by introducing the scaling coefficients of position and force in
(5) and (6). In this paper, however, we will consider the case
when both scales are unity to simplify the discussion.

C. Representation of the Master-Slave System
by Two-Terminal-Pair Network

Two-terminal-pair network is usually used in the analysis
of electrical circuits. Impedance matrix Z is defined from the
relations between current and voltage of a two-terminal-pair
network shown in Fig. 2.

Vi =210y + 21215 @)

Vo =211 + 29215 (8)

7 = [211 212} )
221 222

where I; and Iy denote current at each terminal pair, and V;
and V; denote voltage at each terminal pair.

Let us consider a two-terminal-pair network which is con-
nected to a power source and a load at each terminal pair as
shown in Fig. 3. Regarding the power source as an operator,
the load as an object and the two-terminal-pair network as
a master-slave system, the whole system can be replaced by
the electric circuit in Fig. 3. The correspondence between the
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modeling in the previous section and the circuit representation
in Fig. 3 is given as

velocity of the master arm &, current I,

velocity of the slave arm «—— current [
operator’s force 7,p, «—— voltage V,,
force at the master side f,, «—— voltage V,,,
force at the slave side f —— voltage V;

Representation of the master-slave system by a two-terminal-
pair network is not a new idea. However, Raju [7], [8] has
shown the framework where the operator and object are con-
sidered as a power source and a load connected to the network.
This circuit representation does not change the nature of the
problem at all, but it enables us to formulate in compact forms.
Rewriting the actuator forces 7, and 7, into voltages T,
and T, respectively, in addition to the above correspondence,
(1), (2), (5) and (6) are transformed from time domain into
s-domain as follows:
Tm + va = (ans + bm)Im é (10)

Ty — Vi = (mys + bo)I, = (11

1
T, = |:K:y’lpm5 + K:npm + Kmpm_ Kmfm] {Im :|

anlln
Zl,

s Vin

1 I,
- |:K7,7/1ps‘5 + K:nps + K'”Ps; Kmfs:| |:V;:|

Y ]m I
— [Pm Qm] lﬁvm} - [Rm Sm] |:‘/s:|

1 . 1
T‘s = K;lpms + K;pm + Kspm_, Asfnl Vm
S m

sps*© sps

1
—|K% s+ Koo+ Kops—
S

2eall |- syl o

Eliminating 7}, and 7, from (10), (11), (12) and (13), the
following equation is obtained.

Zm - Pm _Rm Im
—P; —(Zs+ Rs) | |—1s

_ 1+Qm 7Sm Vm
a Qs _(1 +Ss) Vs

Noting that I,.1,.V;, and V,> in Fig. 2 correspond to
I,.—1,.V,, and V in Fig. 3 respectively, elements of the
impedance matrix of the master-slave system are given by

(14 8)(Zm — Pu) + SuPs 2 Nu

(14)

= 8 = 15
M Sy 1400 =80, - Dy Y
2 _ _(1+S§)R171+S"l(zb +Rs) A & (16)
BT+ S0+ Qm) -~ SmQ. Dz
201 = (1+Qm)Ps+Qs(Zm _Pm) A Nay (17)
BT 0+ 800+ Qm) - SmQ. Dz
Zon = (1+Qm)(Zs+Rs) _QsRm A @ (18)
2T 04500+ Qm) — SaQs Dz’
The determinant |Z| is given by
(Zm _Pm)(Zs +R5)+PSRTVI A DY
Z| = = —. 1
S TE A e p v R A

In
—>

VoI'T VmT Z?'v Zz%ur VST

o
Fig. 3. Connection of power source and load to two-terminal-pair network.

The admittance matrix is obtained by inverting Z.

Y=2z1= Y11 Y12
Y21 Y22

Nyy  —Nipo

_| Dy Dy

ol I 20)
Dy Dy

Dynamics of the operator and object can also be represented
in a form of impedance.

1
21, =Myw8 + by + Cu— 210
s

1
ZG =Mops + bop + cup; (22)

Equations (21) and (22) are obtained from the simple
modeling of the operator and object in the previous subsection.
Of course, one can suppose more appropriate impedance
models for Z; and Z¢g if necessary.

III. IDEAL RESPONSES OF MASTER-SLAVE SYSTEMS

In this section, before evaluating the performance of the
system, we discuss what the ideal response of master-slave
systems is. If the definition of the ideal response is valid, it
would be possible to evaluate the performance of the system
by examining how close the actual system response is to the
ideal one.

A. Definition of ldeal Responses

Definition: The following three responses are defined as the
ideal responses of master-slave systems.

Ideal Response I: The position responses «p,, and s by
the operator’s input T,, are identical, whatever the object
dynamics is.

Ideal Response 1l: The force responses fn, and fs by the
operator’s input T, are identical, whatever the object dynam-
ics is.

Ideal Response Ill: Both the position response &, and z,,
and the force responses f, and fs by the operator’s input T
are identical respectively, whatever the object dynamics is.

Obviously, ideal response III means that both the position
response and the force response coincide with the responses
when the operator directly manipulates the remote object.
Therefore, if ideal response III is realized, the operator can
maneuver the system as if he/she were manipulating the remote
object himself/herself. In this sense, ideal response III can
be regarded as a final goal of master-slave systems: ideal
kinesthetic coupling.
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B. Conditions for Ideal Responses

The concept of the two-terminal-pair network is well used
to design electric filters. The master-slave system can also be
regarded as a sort of mechanical filter between the operator
and the object. Here, we define some transmission coefficients
in order to derive the conditions of the ideal responses.

First, we define the velocity transmission coefficient which
specifies the transmission of velocity from the master side
(Im) to the slave side ().

A Inm
=T
From (15) through (18) and the relationship of V, = Z. I,
the velocity transmission coefficient is given by

202+ 21,

T — _Nox+ DzZy
¢ 223 Noy ’

T; (23)

24

Since T; = 1 for any Z;, is necessary for realizing the ideal
response I, the following conditions can be obtained.
1) Conditions for Ideal Response I:

(A)
(B)
Next, we define the force transmission coefficient, T,,, which

specifies the transmission of force from the master side (V,,,)
to the slave side (V).

Dz=0
Noy1 =Ny #0

(25)
(26)

a Ve

Vs

Similarly, from (20) and the relationship of V, = Z.I,,T,
is given by

T, @7

1
T y22+Z—L _ N112L+DY (28)
v —Y21 NuZp

Since T, = 1 for any Z; is necessary for realizing ideal

response 11, the following conditions are obtained.

2) Conditions for Ideal Response II:

(C) Dy=0 (29)
(D) No1 = N1 #0 (30)

Note that T, cannot be defined when Z;, = 0. It will be shown
later that the conditions (C) and (D) are valid in this special
case.!

When the both conditions for ideal responses 1 and II
are satisfied, the system realizes ideal response III. Letting
Em =12, 2 zand f, = f, 2 fin(3)and (4), it is obvious
that z and f become the responses when the operator directly
manipulates the object. In fact, the input impedance from the
operator side is given by ‘

212221
zaa+ 21
_ Dy +NuZg
- Nos+ D371

ZIN =211 —
@D

!'See the footnote in Section IV.

And, substituting the conditions (A), (B), (C) and (D) into
(31), we get

Z IN = Z L (32)
showing that the operator can feel the object impedance
through the system.

3) Conditions for Ideal Response IIl: All
(A), (B), (C) and (D).

Due to the conditions (A) and (C), impedance matrix and
admittance matrix cannot be defined when the system is
realizing the ideal response IIL In fact, there is another matrix,
called chain matrix, that specifies the property of two-terminal-
pair network and can be defined even when the conditions (A)
and (C) are satisfied. In Fig. 2, let the following relations be
considered:

of conditions

Vi =k Ve + kia(—1Io) (33)
I =k Vo + koo(—1) 34)
Chain matrix is defined by
a |k ka2
K = . 35
[’621 k22] ©3)

The chain matrix is used when the output of a two-terminal-
pair network is connected to the input of another two-terminal-
pair network. In the case of master-slave systems, the chain
matrix can be represented by

Nu Dy

K:i{‘z“ |Z|] = |Na Nu (36)
z1 [ 1z ~Zz 22
N31 Ny

Elements of K correspond to the conditions (A), (B), (C)
and (D). When all the conditions (A), (B), (C), and (D) are

satisfied, we get
1 0
K= [O 1].

C. Design Guide of Control Schemes
Realizing the Ideal Responses

(37

In this subsection, we discuss the design policy for new
control schemes that can realize the ideal responses. In (5) and
(6), we have introduced acceleration terms to generalize the
control schemes. Compared to position and velocity, however,
acceleration is difficult to measure. So, it would be desirable if
we could design a control scheme without acceleration terms.

However, it is impossible to satisfy the condition (C) when
the acceleration signals are not used in (12) and (13), i.e.,
when K7 .. = K3, = Ki,, = K}, = 0 in Py, Rpn, P,
and R,. Consequently, the following fact is obtained.

Proposition: In the framework of (5) and (6), any con-
trol scheme without acceleration terms cannot realize ideal
response II nor III. ' '
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IV. EVALUATION OF MANUEUVERABILITY

A high-performance master-slave system means that it can
provide high maneuverability as well as stable operations.
However, qualitative expressions such as “high maneuver-
ability” and “stable operations” are not enough to evaluate
the performance of the system. In this section, we propose a
quantitative index of maneuverability based on the concept of
the ideal responses introduced in the previous section.

A. Performance Index of Maneuverability

Let Grp(8), Gsp(s), Gm#(s), and G4¢(s) be transfer func-
tions of the master-slave system from the operator’s force
Top (Vop) to the master side displacement ., (Im/s), slave
side displacement z (I5/s), master side force fy, (Vi,), and
slave side force fs(V;) respectively. These four transfer
functions are given by

Gmol3) = 5y Nj[ZJ\;zz:r +N12?2ZZZGL]+ Di7iZq Y

Gsp(s) = s2[Dy + N1 Z; ﬂ]j\?;lZG +DzZ1Z¢] &9
2

Gmyls) = s2[Dy + Nfl [Z€Y++N]llé?l DzZ1Zg) @

Gerls) R @

~ 2Dy + Nu1ZL + NaaZa + Dz 21 26)

By using these transfer functions, one can evaluate how well
the actual system realizes the ideal responses.

1) Performance Index of Maneuverability: The following
two indices are defined:

Jp = /0 |Gy (jw) — Gsp(jw)] dw (42)

1
1+ jwT

= [ |Gmf<jw>—asf<jw>|‘ dw (43)

1+ jwT

where wpax is the maximum frequency of the manipulation
bandwidth of human operators, and T (Twmax > 1) is time
constant of first-order-lag. One can evaluate the maneuverabil-
ity of master-slave systems by checking how small the above
indices are. When the system realizes the ideal response I,
index Jj is zero. When the system realizes the ideal response
II, index Jy is zero. Consequently, if both J, and .J; are
close to zero, the response of that system is close to the
ideal response II. In (42) and (43), gain of first-order-lag is
multiplied for the purpose of putting higher weight on the low
frequency region than the high frequency region. Of course,
any other weighting functions can be used.

A difficulty for evaluating the maneuverability with (42) and
(43) is how to choose proper values of Zp and Z¢ which affect
indices J, and Jf. Therefore, it might be better to consider
another indices which contain neither Zj nor Zg. On the
other hand, it makes sense that the operator dynamics is taken
into account for evaluating the maneuverability, because the
maneuverability is measured just for the operator. So, we try
to remove only Z; from indices J, and Jy.

Let us consider two special cases when Z;, = 0 and
Z1, = oo. The former case? corresponds to the situation where
the slave arm is free. The latter corresponds to the case where
the slave arm is constrained with a rigid environment. In these
special cases, the subtractions of two transfer functions in (42)
and (43) become as follows:

(Zy = 0]
5[Nog — N-
Gmp(s) — Gsp(s) = %]G—] 44)
.2 Dy

Gong(5) = Gusls) = iz 49
(2L = oo

Gmp(s) = Gsp(s) = S[N_u +——DZZG] (46)

_ 8[Nuy — Ny
Grng(8) = Gasls) = s[N11 + Dz Z¢] “@n

Making (44), (45), (46), and (47) be zero corresponds to the
conditions (B), (C), (A), and (D) respectively. And one can
get the performance indices which do not contain Zj by
substituting these equations (44) through (47) into (42) and
(43).

B. Numerical Examples of Performance Evaluation

Let us evaluate the maneuverability of the conventional
control schemes such as symmetric position servo type, force
reflection type, and force-reflecting servo type by the proposed
indices. Parameters of the master and slave arms are given by

Mm = my = 6.0]kg], by = bs = 0.1 [Ns/m)].

The following three kinds of object are considered.

[object 1]: my =0.5kg], by, = 0.1[Ns/m],
cw = 1.0[N/m]

[object 2]: my =3.0[kg], b, = 1.0[Ns/m],
¢y =50.0 [N/m]

[object 3]: My = 1.0 x 10* k],

by = 2.0 x 10* [Ns/m],
cw =4.0 x 10*[N/m]

We supposed that object 1 is relatively soft, object 2 is
relatively hard, and object 3 is a nearly rigid one. To simplify
the problem, we set the parameters of the operator by the
following constant values: :

mop = 2.0 [kg],

bop = 2.0[Ns/m}, cop = 10.0[N/m].

Control gains of each scheme were chosen as follows:

21n the case when Z; = 0, substituting (C) and (D) into (40) and (41),
Gonyf(s) =0and G,y = 0 are obtained. It means that fy,, = fs = 0 and the
ideal response II is realized. Therefore the conditions (C) and (D) are valid
even in this case.
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Symmetric Force Reflection Force Servo

Fig. 4. Numerical example of maneuverability index.
1) Symmetric Position Servo Type:
Kmpm = Kmps = —400[N/m], K, .. = —50[Ns/m]
Kspm = Ngps = 400 [N/m}v K.;ps =50 [NS/III]
2) Force Reflection Type:
Kmfs = 1.0, Kepm = Kgps = 400 [N/m]
K;ps = 50 [Ns/m]
3) Force-Reflecting Servo Type:
Kmgm = 2.5, K5, = 3.5
Kops = Kopm — 400 [N/m], K, = 50[Ns/m]

Actuator driving forces, 7,,, and 7,, are obtained by (5) and
(6). Other gains that are not specified above are zero.

Fig. 4 shows the indices J, and Js defined by (42) and
(43) in the cases when Z, = 0 and oo in addition to the
three objects. We set wmax = 100 [Hz] and 1/T = 50 [Hz).
Symmetric position servo type shows small J, but .J 7 is large.
Force-reflecting servo types give larger J, than symmetric
position servo types, but J; is smaller than the other two
schemes.

Since this numerical result is an example with the particular
gains, we cannot conclude which control scheme is the best.
But the evaluation by the proposed indices seems reasonable.
As shown in Fig. 4, indices J,, and J; give different values
according to the object parameters. If we could estimate the
range of the object parameters in advance, we may be able to
get indices J, and J; for the estimated object parameters. On
the contrary, if we cannot estimate the object parameters, we
can evaluate the system with Jp and J¢ using Z;, = 0 and oo.
Of course, it is very important to use accurate parameters of
the operator in order to obtain meaningful results. However,
the parameters such as b,, and c,, may fluctuate according
to the given task. For example, b,, and Cop may be small
when Z; = 0, whereas they may be large when Z; = oo.
Estimation of appropriate parameters of the operator dynamics
for a given task remains for future work.

400

300 -

Ji (1/s)
n
8

%
flection Force Servo

Symmetric Force Re

operator
object

Fig. 5. Ideal state of master-slave system.

operator

object

Fig. 6. Intervening impedance model.

V. EVALUATION OF STABILITY

A. Linear Systems Case

For precise analysis of stability, it is necessary to consider
the whole system including the operator and object dynamics.
Characteristic polynomial of four transfer functions in (38)
through (41) is given by

H(s) :52[Dy+N11ZL+N22ZG+D2ZLZG]. (48)

Of course, if all the roots of (48) are in the left halfplane of
complex number plane, the system is stable. However, it is
difficult to obtain general conditions of stability because Zj,
and Zg are not constant.

B. Passivity of the System

The characteristic equation approach is applicable only
when the dynamics of the operator and object can be repre-
sented by linear systems like (3) and (4). Strictly speaking,
however, the operator dynamics and some of the object
dynamics may be nonlinear. In this subsection, we discuss
the system stability based on the passivity of the system.

Raju [7], [8] showed that the positive definiteness of the
impedance matrix is a sufficient condition of stability. How-
ever, this condition cannot be applied to the case when the
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Fig. 7. Maneuverability indices of the proposed schemes.
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Fig. 8. Simulation results. (a) Case 1 (max |7| = 18.78[N], max |r,| = 13.40[N]). (b) Case 2 (max |7,,| = 13.28[N], max |7,| = 16.79[N].
(c) Case 3 (max |7,,] = 11.19{N], max |7,|] = 11.00[N]).
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Fig. 9. One DOF experimental system.

condition (A) is satisfied. Colgate ez al. [21] showed that the
necessary and sufficient condition of stability for the system
that may interact to any passive environment is that the system
itself must be passive. Burnett [22] had already pointed out that
the passivity is a sufficient condition for the system to remain
stable for any passive load, and he showed that the symmetric
position servo type satisfies this condition. Anderson et al. [23]
also discussed the stability of the master-slave systems with
time-delay by checking the passivity of the system.

Note that passivity itself is not an exact condition of stability
in an input-output sense. For example, a lossless passive
system such like mass-spring system may generate unbounded
outputs by bounded inputs. Passivity of the system can be a
sufficient condition of stability only when the system interacts
passive environments. In the case of master-slave systems, if
we could assume that the operator and the environment are
passive systems, then the sufficient condition of stability is
that the master-slave system itself must be passive. Strictly
speaking, however, the operator is not passive because he/she
has muscles as the power source. Colgate ez al. [21] mentioned
that even if the system has an active term, the system stability
is guaranteed unless the active term is in some way state-
dependent. Obviously, the operator is passive when 7,, = 0.
Therefore, we will give the following assumption about Top:
“The operators input T,, is independent to the state of the
master-slave system. In other words, the operator does not
generate Top that will cause the system to be unstable.”
Dudragne et al. [3] gave a similar assumption in order to use
the concept of passivity for stability distinction. The above
assumption seems tricky in a sense, but it is necessary to ensure
the system stability by the passivity.

Let us derive the conditions of passivity from the circuit
representation. First, we define two vectors V 2 Vi VoI

and I 2 [Im — L]T. The system is passive when the power
P consumed in the system satisfies the following equation:

P =Re(V:I, - V*I,)

(- () (5

=a*(E2—5"S)a>0

(49)

where superscript * denotes conjugate transpose. The matrix S
in (49) is called scattering matrix. Scattering matrix specifies

the relation between the input wave to the system, a e (V+

I)/2, and the output wave from the system, b 2 (V-I1))/2.
b= Sa. (50)
From (49), passive systems satisfy the following inequality:
S .
1811 = max 52— s nizstsy <1 sy
T ||l

In other words, the system is passive if the maximum singular
value of S is less than or equal to 1 [23].
The scattering matrix S of the master-slave system is given
by
1

S =
Dy + N1y + Nog + Dy

Dy + Ni1 — Napg — Dy
2No;

2N12
Dy ~ Ni1 + Noy — Dz
(52)
If the maximum singular value of S in (52) is less than or

equal to 1, the system stability is guaranteed for any passive
objects under the assumption about 7.

X

VI. DESIGN OF CONTROL SCHEMES
REALIZING THE IDEAL RESPONSES

A. Control Scheme Realizing the Ideal Response I11

In this section, we try to design control schemes that realize
the ideal responses based on the results obtained in Section III.
First, we design a control scheme which realizes the ideal
response III.

Let the following basic form of control schemes be con-
sidered:

Tm = MU + by Tm — kmf(fs ;fm)
fm + fs
T &3
Ts =Mgls + byZs — ksf(%)
Y, ”

where k5 and k5 (>0) are force gains, and u,, and u, are
new inputs. Equations (53) and (54) satisfy the condition (A)
derived in Section III unless force signals are used in the new
inputs w,, and u,. We assume that physical parameters of
each arm, such as m,, ms, b, and b,, are exactly known.
Substituting (53) and (54) into (1) and (2) respectively, the
following equations are obtained:

. 1 fs - fm
= - — —_— 55
Lm = Um mm(1+kmf)( 5 ) (55)
- 1 fs - fm
Ty =Ug — ms(l+k8f)( 3 ) (56)
Adding both sides of (55) and (56), we obtain
1 m S
Bt e = U by — (_Jf’f_uﬂ)
Mim Mg
fs — fm
| — 57
(45 o
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Fig. 10. Experimental results: position responses in Task 1. (a) Conventional force-reflecting servo type. (b) Proposed type with x = 0.0. (c) Proposed

type with » = 0.8.
In (57), if
T + Ts = Um + s (58)
can be satisfied, we get
fm—fs=0. 59)

Equation (59) means that at least the ideal response II has been
realized. Then, subtracting both sides of (56) from (55) and
considering (59), we get

€ = Upm — Ug

(60)

A ..
where ¢ = 1z, — x, denotes the position error between the
two arms. Equation (60) shows that the behavior of ¢ can be
specified by u,, — us. Here, we set u,, — u, as follows:
Uy, — Us = —k16 — koe. 61)
Then, we get
€+ kié+ koe =0. (62)

Equation (62) means that e converges asymptotically into zero
with appropriate gains k; and k2, and the ideal response III

can be realized. From (58) and (61), u,,, and u, are obtained
as follows:

U = §(Em + &5) — Sk1é — Lhoe (63)
Us :%(inl'i"'.zs)_f_ %klé'}_%er' (64)
Finally, the control scheme is obtained as follows:
Tm = 7nm[fims + kl (-ims - -Tm) + kZ(:Ems - Tm)]
+bmi'm_kmf(fms_fm)_fms (65)
Ts =ms[-;l}ms + kl(-'i:ms - is) + kZ("I;ms - xs)]
+bsis_ksf(fms_fs)_fms (66)

where T, 2 (Tm+2zs)/2 and frs 2 (fm=+fs)/2. Equations
(65) and (66) can be interpreted as a combined scheme of the
computed torque method with the force control, where the
computed torque method makes the arm follow the desired
trajectory ,,s and the force control part regulates both f,,
and f; at f,,. Force gains k., and k¢, in (65) and (66) do
not give any effects because (59) is realized.

It should be noted that we assumed that arm parameters
M, Ms, by, and by are exactly known, whereas no parameters
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Fig. 11.

type with & = 0.8.

of the operator dynamics and the object are required for
the proposed scheme. In other words, once we identified
the parameters of master and slave arms, we can build the
controller without knowing the operator and object dynamics.

However, identified parameters of the master and slave
arms may contain some errors, and not only these parameter
errors but also noises of the acceleration and force signals
and the computation delays may cause the system to be unsta-
ble. Several researchers have discussed the robustness of the
computed torque method for trajectory control of manipulators
with respect to the uncertainty of the parameters. By choosing
appropriate feedback gains, the controller provides an arbitrary
small tracking error capability for the particular class of the
desired trajectories [24]. In our case, the parameter uncertainty
or time delay may spoil the realization of (58). Consideration
of robustness of the controller against these factors remains
for future work.

Experimental results: force responses in Task 1. (a) Conventional force-reflecting servo type. (b) Proposed type with x = 0.0. (c) Proposed

From (65) and (66), we get

1
Mm = = -
m =5 (s = k1= ka/s) + b, @m=5(kms—1)
. 1
m=—m7(5+k1+k2/3)7 Sm:i(kmf+1)
My 1
Ps = 7(8 +k1 +k2/5)1 Qs :g(kﬂf + 1)
3273(—5+k1+k2/3)_b87 Ss=%(ksf*1)

and we can show that the proposed scheme satisfies the
conditions of the ideal response III.

B. Control Schemes Realizing the ldeal Responses I and Il

In the previous subsection, we have proposed a new control
scheme which realizes the ideal response I1I. The proposed
scheme completely cancels the dynamics of both the master
and slave arms which actually exists between the operator and
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Fig. 12. Experimental results: position responses in Task 2. (a) Conventional force-reflecting servo type. (b) Proposed type with v = 0.8.
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Fig. 13. Experimental results: force responses in Task 2. (a) Conventional force-reflecting servo type. (b) Proposed type with & = 0.8.

the remote environment. Applying the control scheme of (65)
and (66) corresponds to achieving the state shown in Fig. 5
from the actual system shown in Fig. 1, where the operator and
the object are virtually connected by a rigid but weightless bar.
However, this state is very critical because only a small error
of the inertia parameter may change the massless bar into a
bar with negative mass. Here, we try to make the dynamics
of master and slave arms act as a certain kind of impedance
shown in Fig. 6. Since this impedance seemingly intervenes

between the operator and the object, we call it intervening
impedance. The existence of this intervening impedance makes
the system strictly passive, and an appropriate impedance may
be able to help the operator in a given task.

The state of Fig. 6 can be described by the following
equation by setting z,, = ¥, 2 T

Sm = fs =mi + bi + éx (67)
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Fig. 14. Experimental results: position responses in Task 3. (a) Conventional force-reflecting servo type. (b) Proposed type with x = 0.8.
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Fig. 15. Experimental results: force responses in Task 3. (a) Conventional force-reflecting servo type. (b) Proposed type with x = 0.8,

where 72, b, and ¢ are the mass, coefficient of viscous friction, We also set the following equation corresponding to (62):
and stiffness of the intervening impedance respectively. Since fm + f
Zm and s may not coincide all the time, we consider the E+kié+ ke =" 22 (69)
following equation instead of (67):
. where A > 0 is a positive constant. Substituting new inputs
I — fs = Mims + b + ¢Tums. (68)  um and u,, which realize (68) and (69), into (53) and (54),
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respectively, we get the following control scheme:

—m)]

Tm = Mm [4.1.:1778 + kl (-’hns - ~I'7m) + kQ (J;ms

1 km n e 7 ~
+ bm :i'lrz - %[mmms + ['-17771.5 + c-/l"mvs]
A .
+ ;"Lm.}lms - km_f(fms - fm) - fms (70)
Ts = T”s[{i"nn + k (j’ma - 15) + k?(l'ms - -/ns)]
1+ ks
+{)5.’i75 @[’nlms +l”ms +(Im=:}
A
- §7fl'sfms+ksf(fms"fs‘)+fms' (71)

If we set A = 0 in (70) and (71), e converges into zero with
appropriate gains k1. ko. Therefore, the control scheme of (70)
and (71) with A = 0 is one of the examples of the control
schemes that realize ideal response I. When A = 0 and ¢ = 0,
the corresponding intervening impedance can be regarded as a
mechanical master-slave manipulator model where the viscous
friction of }he transmission wires is considered. Moreover,
when m = b = ¢ = 0 and X = 0, this control scheme coincides
with that of (65) and (66). In this sense, the control scheme of
(65) and (66) is a special case when the intervening impedance
is zero.

On the contrary, when m = =b=2¢=0and A # 0 in (70)
and (71), this control scheme reallzes ideal response II.

Consequently, we can regard the control scheme of (70)
and (71) as a general form of the control schemes realizing
three ideal responses. If we set A # 0 and m.b #0.¢ =0,
the control scheme cannot realize the ideal response I nor
II. However, the corresponding intervening impedance can be
a model of mechanical master-slave manipulators where the
stiffness of the transmission wires is also considered.

C. Discussion about Stability

In Section V, we have discussed the system stability based
on the concept of passivity. In this subsection, we show the
passivity of the system when the general form of control
scheme in (70) and (71) is applied.

In Section V, we have shown that the passivity of the
system can be checked by the scattering matrix. Substituting
the parameters of (70) and (71) into (52), we get

1
)((ms+b+(/) 2)

TGtk tha/s) L

a 3
X [ﬂ (y} (72)
where
a =(s+ky + ka/s)( ms+ +¢é/s) —
B =2(s+ k1 4 ka/s) — 5(ms + J+(/é
From (72), the singular values of S are given as follows:
+h4¢e/s) -2
s b s 2l .
[(7ns + b+ ¢/s) +2\
+k1+k —3A
I (G 70l Y (74)
(s + k1 + ka/s) + 3A|

Consequently, the system stability when the proposed control
scheme is applied has been guaranteed under the assumption
in Section V.

From (73) and (74), both singular values become just 1
when the control scheme of (65) and (66) is applied. This
is a critical situation where there is no power consumption
in the system. This ideal situation can be realized only when
the arm parameters are exactly known and exact signals of
position, velocity, acceleration, and force are available without
time delay. Therefore, in practical sense, the system may
not keep passive unless we set an appropriate intervening
impedance. Exact conditions for the intervening impedances
to keep passive against time delay and parameter uncertainty
should be studied in future.

D. Simulation

In this subsection, we confirm the validity of the proposed
control scheme by simulations. We used the same parameters
of the master and slave arms and the operator as those in the
numerical examples in Section IV. Object 2 in the numerical
examples was chosen for the simulation.

The following three control schemes are compared.

Case 1: Force-reflecting servo type:

Kmfm = 25 Kmfs =35
Ksps = Kgpm = 400 [N/lll], K!

sps

= 50 [Ns/m].
Case 2. Proposed scheme (65) and (66):

k1 =8.0[1/s], ke

=T70[1/8%. ks = kes = 0.

Case 3: Proposed scheme (70) and (71):
k1= 8.0[1/s], ky=T0[1/5%], 7 =2.0lkg]
b= 1.0[kg/s|, ¢=00[kg/s’]. A=0.21[1/kg]
kg = ks =0.

Before showing the simulation results, let us evaluate the
maneuverability of the proposed schemes by the proposed
indices .J, and J;. Fig. 7 shows the indices of the above three
cases. Case 1 has the same gains with the numerical examples
in Section IV, and one can compare the performance of the
proposed schemes to those of the other conventional schemes
in Fig. 4. Since case 2 realizes the ideal response III, both
indices are zero for any Z.

Fig. 8 shows the responses of z,,.xs. fm and fs, respec-
tively, when a sinusoidal input 7,, = 5 — 5cos (47t) [N] is
exerted. Sampling time is 1 [ms]. In the figure, the maximum
actuator inputs max |7,,| and max |75| are shown. While case
1 has errors in both position and force responses, case 2 almost
realizes ideal response III. It should be noted that the case 1
becomes unstable with larger gains. Case 3 shows the effect of
the intervening impedance. The actuator inputs were reduced
due to the existence of the intervening impedance.
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VII. EXPERIMENT
A. Experimental System

We built a prototype of master-slave system for exper-
iments. Master and slave arms are 3 DOF SCARA-type
planar manipulators. All joints are driven by direct-drive DC
motors produced by SHINMEIWA Industry Co. Ltd. Arm
configurations of master and slave are identical and each link
length (link1 = 0.25 [m], link2 = 0.3 [m]) was chosen so that
its configuration is equal to the projection of human arm onto
the horizontal plane.

We named this experimental master-slave system “RATSU-
WAN” that means “outstanding ability” in Japanese. Controller
is a personal computer with 32-bit CPU 80386/80387 (20
MHz), and the torque command is sent to each motor driver
through a D/A converter. Encoder pulse signals (120000
plus/rev) of each joint can be obtained from an output terminal
of each motor driver.

In order to get a sufficient resolution of the joint velocities
in wide range, the following two method are combined: 1)
counting the number of crystal clock pulses during the interval
of the encoder pulses and 2) differentiating the encoder pulse
count in each sampling period. Six-axis force/torque sensors
produced by OMRON Co. Ltd. are attached at both tips of
the arms.

B. Tasks in the Experiment

We used only the elbow joint (joint 2) of each arm in the
experiment. The shoulder joint (joint 1) is mechanically fixed,
whereas the wrist joint (joint 3) is free so that the operator can
always grip the arm tip firmly. Fig. 9 shows the experimental
setup with one DOF system.

The following three tasks were carried out.

1) Task 1: The slave arm is free. There are three LED’s
on a table at the slave side, and they are lighted one-by-one
periodically. The operator maneuvers the system so that the
tip of the slave arm comes onto the lighted LED.

2) Task 2: An aluminum plate is firmly fixed on the table
by cramps. The operator makes the slave arm collide with the
plate and push the plate through the system. Since the tip of
the slave arm is also made of aluminum, the contact becomes
the most critical one, “hard contact” [10].

3) Task 3: A sponge for dishwashing is set at the slave side.
The operator pushes the sponge through the system and exam-
ines how well he/she can feel the impedance of the sponge.

C. Control Schemes

We chose a typical conventional control scheme, force-
reflecting servo type. The control scheme and its gains are
given as follows:

1) Force-Reflecting Servo-Type:

Tm = — fs — Kf(fs - fm)
Te = Ky(&m — 36 ) + Kp(xn, — z5)
K. =166.7|Ns/m]), K, = 1333.3[N/m)]
K; =03
where z,, = Iy x 0,, and T, = I, x 0, are equivalent hand
tip displacements of the master and slave arms, 6, and 6,

denote the joint angles, and /3 = 0.3 [m] is the link length.
The equivalent driving forces at the tip 7,,, and 7, are finally
converted to the joint torques.

The proposed control scheme in Section VI can be repre-
sented by the following form:

2) Proposed Type:

Tm =K‘M£i'ms + Kv(z.s - Im) + Kp(xs - wm) - fms
Ts :NMi'ms + Kv(-'im - Is) + Kp(xm - -735) + fms
K, =166.7[Ns/m], K, =1333.3[N/m]

where M is the equivalent mass obtained from the moment
of inertia around joint 2 and its identified value is 6.04 [kgl,
and k denotes the coefficient of dynamics compensation. The
above control scheme corresponds to (70) and (71) when
M = ms = M,ky = 2K,/M,ky = 2K,/M, by, = b, =
0,A =0,kms = kg = 0,77 = 2(M — kM) and b = ¢ = 0.

When k = 1.0, the above scheme cancels all of the arm
dynamics and it realizes the ideal response IIl. When 0 <
& < 1.0, the inertia of 7 = 2(M — kM) intervenes between
the operator and remote environment, and ideal response I is
realized.

Acceleration signals of the both arms are obtained by
numerically differentiating the velocity signals. The differ-
entiated data is passed through a digital filter whose cut-off
frequency is 19.8 Hz. Ideally, we can set & as close to 1.0 as we
want. However, « = 0.8 was the actual upper bound to keep
the good responses due to the delay of acceleration signals.
Therefore, we set £ = 0.8. Sampling time was 1.68 ms for all
cases. We cannot guarantee the system passivity with the pro-
posed scheme using filtered accelerations. Consideration of the
system passivity with filtered signals remains for future work.

D. Experimental Results and Discussion

Figs. 10 through 15 show experimental results of three tasks
by the conventional control scheme and the proposed scheme.

In Task 1, as shown in Fig. 10, position response of the slave
arm has over-shoot with respect to that of the master arm when
the conventional force-reflecting servo type is applied. In task
1, the force of the master side should be small as much as
possible in the sense of ideal response because no external
force is applied at the slave side.

In this task, we also show the results when « = 0.0 in
addition to x = 0.8. As shown in Figs. 10 and 11, position
responses of the master and slave arms are almost equal with
the proposed schemes, since it satisfies the condition of the
ideal response I irrespective of the value of x. When x = 0.0,
the operator feels the intervening inertia which is twice of the
original arm inertia. And the apparent inertia becomes very
heavy. However, by canceling the dynamics of the two arms
with £ = 0.8, the force at the master side becomes smaller and
the system response becomes closer to the ideal response II1.

In Task 2, there is more remarkable difference between
the conventional control scheme and the proposed scheme
as shown in Figs. 12 and 13. With the conventional scheme,
large position error appears when the slave comes into contact
with the object. Since the conventional scheme generates the
force at the slave side based on the position errors between
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the master and slave, it is necessary to make the feedback gain
infinitely large in order to make the position error zero. Practi-
cally, however, large gains may cause instability of the system.
In the case of the proposed scheme, the position error between
the master and slave arms is almost zero even when the slave
arm collides with the object. Consequently, the operator can
feel a realistic “rigid wall” with the proposed scheme.

In Task 3, the operator exerted force periodically against
the sponge. The results are shown in Figs. 14 and 15. When
the proposed scheme is applied, the operator is able to feel a
delicate impedance of the sponge.

VIII. CONCLUSION

The main results of this paper can be summarized as

follows:

1) A simple one degree of freedom system model of the
master-slave system has been discussed where both the
operator dynamics and object dynamics have been taken
into account.

2) Three ideal responses have been defined and the condi-
tions to achieve these ideal responses have been derived.
A quantitative index of maneuverability has been pro-
posed based on the concept of the ideal responses. For
evaluating the maneuverability of the system, parameters
of the master and slave arms, parameters of the operator
dynamics and the object dynamics are necessary.

3) The stability of the system is discussed based on the
concept of network passivity.

4) New control schemes of master-slave manipulators have
been proposed which can realize the ideal responses.
These control schemes take the arm dynamics into
account using acceleration signals. The proposed scheme
requires exact parameters of the arm dynamics but
parameters of the operator and object are not necessary.
It has been shown that the proposed control scheme
guarantees the stability under a certain assumption.

5) The proposed control schemes have been implemented
with a prototype of master-slave system and the validity
of the proposed control scheme has been confirmed.
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