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Abstract

This paper presents a sliding mode filter for removing noise. It effectively removes impulsive

noise and high-frequency noise with producing smaller phase lag than linear filters. In addition, it

is less prone to overshoot than previous sliding mode filters and it does not produce chattering. It

is computationally inexpensive, and thus suitable for realtime applications. The proposed sliding

mode filter employs a quadratic surface as its sliding surface, which is designed so that the output

converges to the input in finite time when the input value is constant. Its algorithm is derived by

using the backward Euler discretization, which can be used to prevent chattering. The effectiveness

of the filter was shown by experiments by using an ultrasonic sensor and an optical encoder.

keywords: Quadratic Sliding Mode Filter, Finite Time Convergence, Backward Euler Discretization,

Chattering Avoidance, Overshoot Reduction

1 Introduction

In many robotics applications, sensor signals are corrupted by high-frequency noise. The use of a linear

filter is often the first choice for removing such noise because of its simplicity, but it is also known

to have some drawbacks. One is that a linear filter proportionally transfers any noise component into

the output and thus it cannot remove high-amplitude impulses such as those considered as outliers.

Another drawback is that it produces a phase lag in the output and thus the original shape of the input

is distorted. These problems cannot be ignored in such cases where the noise has high amplitude (i.e.,

it is impulsive) and where the frequency range of the original signal is slightly below that of the noise

signal. For example, the distance measurement obtained through an ultrasonic sensor often contains

impulsive noise. As another example, the velocity signal obtained through the numerical differentiation

of the position reading from an optical encoder is corrupted by high-frequency noise, while instantaneous

velocity information is demanded for injecting damping into a position-controlled mechatronic system.

Some classes of nonlinear filters have been studied in order to avoid drawbacks of linear filters. For

example, the median filter [1] is known to be useful for removing impulsive noise. It is, however, pointed
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out that its computational cost is high [2]. The peak-and-valley filter [3], which is also for removing

impulsive noise, is faster but less effective than the median filter, as pointed out by [4]. An adaptive

windowing filter [5], as another example, is used for removing high-frequency noise caused by numerical

differentiation, but its window size should not be too large for preventing unacceptable computational

cost.

Some researchers study the use of sliding mode techniques for filtering [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

One of the major problems raised in implementing sliding mode techniques is chattering, which is

high-frequency oscillation in the output value. In order to reduce chattering, some remedies such as

adaptive switching gain [6], boundary layer [7] and low-pass filtering [8] are used. However, with these

remedies, the finite time convergence to the sliding mode cannot be realized in a strictly mathematical

sense and the parameters must be carefully chosen considering the trade-off between the chattering

attenuation and the convergence precision. It is known that sliding mode observers based on the super-

twisting algorithm [9, 10, 11, 12, 13, 14, 15] realize finite time convergence in continuous-time analysis.

However, the accuracy of convergence in discrete-time implementation, typically with the forward Euler

discretization [13, 14, 15], depends on the sampling interval, as pointed out in [9]. In addition, they are

prone to overshoot during the convergence.

The use of a quadratic sliding surface has also been studied in the field of filtering [16, 17, 18]. One

of its advantages is that, by using it, the output converges to the input in finite time when the input

is constant. In particular, Emaru and Tsuchiya [17, 18] named their quadratic sliding mode filter as

ESDS1 and they used it for removing impulsive noise. A problem of their filter is that it is prone to

overshoot. Another problem is that the numerical error caused by their discrete-time implementation

[19] produces chattering, as will be demonstrated in Section 2.2.

This paper presents a sliding mode filter that employs a quadratic surface as its sliding surface.

The proposed filter effectively removes impulsive noise and high-frequency noise with producing smaller

phase lag than linear filters. In addition, it is less prone to overshoot than previous sliding mode filters.

Its algorithm is derived by using the backward Euler discretization, which can be used to prevent

chattering. This algorithm is computationally inexpensive, and thus suitable for realtime applications.

The rest of this paper is organized as follows. Section 2 discusses previous work on quadratic sliding

mode filters and clarifies their problems. Section 3 presents a new quadratic sliding mode filter, which

performs better than previous methods. In section 4, experimental results are shown to demonstrate

the advantages of the proposed filter, and in section 5, conclusions are drawn.

1According to Emaru and Tsuchiya [17, 18], the full form of ESDS is “the system which estimate the smoothed value

and the differential value by using sliding mode system”.
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2 Quadratic sliding mode filters

2.1 Continuous-time expression of quadratic sliding mode filters

Let us consider the system described in the following expression:

ẋ1 = x2 (1a)

ẋ2 = −F sgn(σ) (1b)

where

σ , 2F (x1 − u) + |x2|x2. (2)

Here, u ∈ R is an input, x1 ∈ R and x2 ∈ R are the system states, F > 0 is a constant, and sgn is the

signum function defined as follows:

sgn(z) ,


1 if z > 0

[−1, 1] if z = 0

−1 if z < 0.

(3)

Here, note that the return value of the sgn function is a set of values instead of a single value. Therefore,

strictly speaking, “=” in (1b) should be replaced by “∈”, but “=” is used throughout this paper for

notational simplicity. Equation (1b) should be interpreted to be equivalent to the following logical

expression:

(ẋ2 = −F sgn(σ) ∧ σ ̸= 0) ∨ (ẋ2 ∈ [−F, F ] ∧ σ = 0). (4)

The system (1) can act as a filter with the input u and the output x1. Han and Wang [16] used

this filter for removing white noise contained in u, and Emaru and Tsuchiya [17, 18] used it to remove

impulsive noise contained in u. The sliding surface of the filter (1) is a quadratic surface, which is the

set of states (x1, x2) that satisfy the quadratic equation 2F (x1 − u) + |x2|x2 = 0, as illustrated by the

solid curve in Fig. 1.

In the filter (1), when σ ̸= 0, according to (1b), ẋ2 satisfies

ẋ2 = −F sgn(σ). (5)

In this period, the state (x1, x2) moves along quadratic curves in the state space, as illustrated by dashed

curves in Fig. 1. On the other hand, when σ = 0, i.e.,

2F (x1 − u) + |x2|x2 = 0 (6)

is satisfied, the state (x1, x2) moves along the quadratic curve in the state space, as illustrated by the

solid curve in Fig. 1.

In particular, when u̇ = 0 and σ = 0, differentiating the both sides of (6) yields

ẋ2 = −F sgn(x2). (7)
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Figure 1: Quadratic sliding surface (solid curve) and trajectories of the state (x1, x2) for σ ̸= 0 (dashed

curves) in the filter (1).
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Figure 2: Analytical solution of (1) with a step change in u.

Therefore, when u̇ = 0, ẋ2 takes the value of either −F or F , according to (5) and (7). Such a behavior

of the system (1) is similar to that of a system under bang-bang control [20, Chapter 5], which drives

the state (x1, x2) from arbitrary initial states to the target state (u, 0) in the minimum time under the

constraint |ẋ2| ≤ F . Fig. 2 shows the analytical solution of (1) with a step change in u of which initial

state is (0, 0). In Fig. 2(b), we can observe that the trajectory of the state is symmetric in the x1-x2

space. For the former half, the filter (1) is in reaching mode, and the latter half, it is in sliding mode.

This symmetry is due to the fact that the output x1 reaches the half-amplitude of the input u with

ẋ2 = F from its initial value, and then it reaches the input u with ẋ2 = −F , as shown in Fig. 2(a).

A problem of the filter (1) is that it is prone to overshoot. Fig. 3 shows the analytical solution of

(1) with a step change in u that is temporarily corrupted by a disturbance. As the solid curve shown in

Fig. 3(b), the state (x1, x2) deviates from the sliding surface σ = 0∧x2 > 0 into the region σ > 0∧x2 > 0

by the influence of the disturbance. After the disturbance disappears, the deviated state moves parallel

to the sliding surface. This is because, in the region σ > 0 ∧ x2 > 0, ẋ2 takes the same value as that

is taken on the sliding surface σ = 0 ∧ x2 > 0 (i.e., ẋ2 = −F ). Thus, the state returns to the sliding

surface after an overshoot, i.e., after crossing the line x1 = u. As a whole, if the state is in the region
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Figure 3: Analytical solution of (1) with a step change in u that is temporarily corrupted by a distur-

bance (F = 200).

σx2 > 0, it does not reach the sliding surface before crossing the line x1 = u.

2.2 Discrete-time algorithm of quadratic sliding mode filters

According to Emaru et al. [19], they originally implemented the filter (1) by using 4th-order Runge-Kutta

method as the discrete-time integrator. To make the computation fast, they further proposed another

integration method, which they call “fast calculating method (FCM)” [19]. As to the authors’ knowledge,

these two are only explicitly-reported discrete-time algorithms of the filter (1) in the literature. A

problem of FCM is that the state (x1, x2) cannot exactly reach the sliding surface σ = 0 due to numerical

errors, and thus there occurs chattering. Fig. 4 shows the numerical solution of (1) with a step change

in u obtained by FCM. We can observe that the state (x1, x2) slightly crosses the sliding surface and

thus there occurs small overshoot, as shown by the dashed curves in Fig. 4(c) and Fig. 4(d). Because

the state (x1, x2) never exactly reaches the sliding surface, chattering continues around x1 = u as shown

in Fig. 4(e) and Fig. 4(f).

3 Proposed Filter

3.1 Motivation for the proposed filter

The motivation for proposing a new filter comes from the observation that there are two sources of

the filter (1)’s tendency to overshoot. One is that the value of ẋ2 in the region σx2 > 0 does not

force the state (x1, x2) to reach the sliding surface before crossing the line x1 = u. The second one is

that numerical error and chattering are caused by improper discretization. Toward these problems, our

contribution is twofold. First, we propose a modification of (1) to attract the state (x1, x2) toward the

sliding surface even when σx2 > 0. Second, we present a discrete-time algorithm for integrating the

modified version of (1) by using the backward Euler discretization, which can be used to realize exact

reaching to the sliding surface.
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Figure 4: Numerical solution of (1) with a step change in u obtained by FCM (F = 200, T = 0.001 s).

3.2 Continuous-time expression of the proposed filter

In order to force the state to be attracted by the sliding surface even when σx2 > 0, let us consider the

following modification of (1):

ẋ1 = x2 (8a)

ẋ2 =

−αF sgn(σ) if σx2 > 0

−F sgn(σ) if σx2 < 0

(8b)

where α > 1 is a constant and

σ , 2F (x1 − u) + |x2|x2. (9)
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Figure 5: Behavior of gsgn(A, z,B).

In the filter (8), the value of |ẋ2| in the case of σx2 > 0 is modified from F to αF . Because of this

modification, in the region σx2 > 0, the state moves toward the sliding surface instead of moving

parallel to it. The idea of changing the gain according to different conditions can also be found in the

literature (e.g., [21, 22]).

A flaw of the expression (8) is that it does not define the value of ẋ2 when σx2 = 0. A more strict

expression of (8) can be written as follows:

ẋ1 = x2 (10a)

ẋ2 = −Fgsgn(gsgn(−α, x2,−1), σ, gsgn(1, x2, α)) (10b)

where

σ , 2F (x1 − u) + |x2|x2. (11)

Here, gsgn is the generalized signum function defined as follows:

gsgn(A, z,B) ,


B if z > 0

[min(A ∪B),max(A ∪B)] if z = 0

A if z < 0

(12)

where A ⊂ R and B ⊂ R are closed intervals (which can be scalars as a special case) and z ∈ R. This

generalized signum function (12) is a set-valued function as sgn in (3) is. Fig. 5 illustrates the behavior

of gsgn(A, z,B). It is worth noting that, when z = 0, (12) return the union of A, B, and all values in

between. In addition, (12) reduces to (3) when A = [−1,−1] and B = [1, 1].

Fig. 6 shows the quadratic sliding surface (solid curve) and trajectories of the state (x1, x2) for

σ ̸= 0 (dashed curves) in the filter (10), and Fig. 7 shows the relation among x1, x2 and ẋ2. When

σx2 ̸= 0, (10) is equivalent to (8), and ẋ2 takes a single value (−αF , −F , F or αF ), as shown by the

horizontal surfaces in Fig. 7. When σx2 = 0, on the other hand, ẋ2 takes a value between the values of

ẋ2 in adjoining regions, as shown by the vertical surfaces in Fig. 7. It is clear that (10) reduces to (1) in

the case of α = 1 considering the properties of gsgn such as gsgn(−1, x2,−1) = −1, gsgn(1, x2, 1) = 1,

and gsgn(−1, σ, 1) = sgn(σ).
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Figure 6: Quadratic sliding surface (solid curve) and trajectories of the state (x1, x2) for σ ̸= 0 (dashed

curves) in the filter (10).

Fig. 8 shows analytical solutions of the filters (10) and (1) under step-like disturbances. These results

can be obtained by using simple algebra considering the fact that every solution trajectory of (10) and

(1) is a sequence of parabola arcs in the state space. First, Fig. 8(a) and Fig. 8(b) show the case where

a rightward sliding motion is disturbed by a positive pulse-like disturbance. The state deviates from the

sliding surface due to the disturbance, and after the disturbance, it converges to the sliding surface again

in the new filter (10) but does not in the conventional filter (1). In both filters, the deviation is caused by

the attraction toward a temporarily displaced sliding surface with a constant acceleration ẍ1 = ẋ2 = F .

Therefore, the magnitude of the deviation increases as the disturbance magnitude increases, but only

up to a particular level that is determined by the duration of the disturbance.

Second, Fig. 8(c) and Fig. 8(d) show another set of solutions in cases where negative disturbances

are applied during a rightward sliding motion. The new filter (10) is influenced by the disturbance,

exhibiting slower convergence, while the conventional filter (1) is not. This is because a large α value

can result in a stronger attraction (i.e., a larger |ẍ1|) to the displaced sliding surface, which would be

undesirable in some cases. This implies that an appropriate guideline should be sought for the choice

of α considering this effect.

Third, Fig. 8(e) and Fig. 8(f) show the effect of disturbances in the steady state. It is shown that

the new filter (10) produces a faster resuming than the conventional filter (1). After the disturbance

disappears, the x2 value of the filter (10) changes toward x2 = 0 faster than that of the filter (1) because

of α > 1.

3.3 Discrete-time algorithm of the proposed filter

We derive the discrete-time algorithm for integrating (10) by using the backward Euler discretization,

which can be used to realize exact reaching to the sliding surface.
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Figure 7: Relation among x1, x2 and ẋ2.

Based on the backward Euler discretization, (10) can be approximated as follows:

x1(k)− x1(k − 1)

T
= x2(k) (13a)

x2(k)− x2(k − 1)

T
= −Fgsgn(gsgn(−α, x2(k),−1), σ(k), gsgn(1, x2(k), α)) (13b)

σ(k) = 2F (x1(k)− u(k)) + |x2(k)|x2(k) (13c)

where k denotes the discrete time index. By using (13a), we can remove x1(k) as follows:

x2(k)− x2(k − 1)

T
= −Fgsgn(gsgn(−α, x2(k),−1), σ(k), gsgn(1, x2(k), α)) (14a)

σ(k) = |x2(k)|x2(k) + 2FTx2(k) + 2F (x1(k − 1)− u(k)). (14b)

This can be seen as a set of simultaneous equations that determines x2(k) by using u(k), x1(k− 1) and

x2(k − 1).

Now, the solution of (14) with respect to x2(k) is derived. First, we can simplify (14) as follows:

x2(k)− x2(k − 1)

T
= −Fgsgn(gsgn(−α, x2(k),−1), x2(k)− x∗

2(k), gsgn(1, x2(k), α)) (15)

where

x∗
2(k) = sgn(x1(k − 1)− u(k))(FT −

√
F 2T 2 + 2F |x1(k − 1)− u(k)|). (16)

Here, x∗
2(k) is the value of x2(k) that satisfies σ(k) = 0. Equation (15) is equivalent to (14) because

σ(k) is a monotonously increasing function with respect to x2(k).

Furthermore, (15) can be rewritten as follows:

−(x2(k)− x2(k− 1)) = gsgn(gsgn(−αTF, x2(k),−TF ), x2(k)− x∗
2(k), gsgn(TF, x2(k), αTF )). (17)

By applying the proposition that is shown in the appendix, x2(k) can be moved out from the right-hand

side of (17) as follows:

−(x2(k)−x2(k−1)) = gsat(gsat(−αTF, x2(k−1),−TF ), x2(k−1)−x∗
2(k), gsat(TF, x2(k−1), αTF )).

(18)
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disturbances (F = 200, α = 4).

Here, gsat is a generalized saturation function [23] defined as follows:

gsat(a, z, b) ,


b if z > b

z if z ∈ [a, b]

a if z < a

(19)
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x1(k − 1), x2(k − 1) and x2(k)− x2(k − 1).

where a ≤ b. Fig. 9(a) shows the relation among x2(k − 1) − x∗
2(k), x2(k − 1) and x2(k) − x2(k − 1),

and Fig. 9(b) shows the relation among x1(k− 1), x2(k− 1) and x2(k)−x2(k− 1). Then, we can obtain

x2(k) from (18) as follows:

x2(k) = x2(k− 1)− gsat(gsat(−αTF, x2(k− 1),−TF ), x2(k− 1)− x∗
2(k), gsat(TF, x2(k− 1), αTF )).

(20)

In conclusion, the complete discrete-time algorithm of the proposed filter is as follows:

x∗
2(k) := sgn(x1(k − 1)− u(k))(FT −

√
F 2T 2 + 2F |x1(k − 1)− u(k)|) (21a)

x2(k) := x2(k − 1)− gsat(gsat(−αTF, x2(k − 1),−TF ), x2(k − 1)− x∗
2(k),

gsat(TF, x2(k − 1), αTF )) (21b)

x1(k) := Tx2(k) + x1(k − 1). (21c)

Fig. 10 shows the numerical solution of (10) with a step change in u obtained by algorithm (21). Note

that the state exactly reaches the sliding surface and the target state (u, 0). It is also worth noting that

there is no chattering in sliding mode. This kind of ways of avoiding chattering by using the backward

Euler discretization is also reported in [23, 24, 25].

In addition, by setting α = 1, (21) reduces to the following:

x∗
2(k) := sgn(x1(k − 1)− u(k))(FT −

√
F 2T 2 + 2F |x1(k − 1)− u(k)|) (22a)

x2(k) := x2(k − 1)− gsat(−TF, x2(k − 1)− x∗
2(k), TF ) (22b)

x1(k) := Tx2(k) + x1(k − 1). (22c)

This algorithm can be viewed as another discrete-time algorithm of ESDS (1). In Section 4, this

algorithm will be compared with (21) to demonstrate the advantage of using α > 1, and it also will be

compared with FCM to demonstrate the advantage of backward Euler discretization.

Fig. 11 demonstrates the tracking performances of the proposed filter (21), the second-order But-

terworth low-pass filter (BWF), and ESDS implemented with the backward Euler method (ESDS-BE),
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Figure 10: Numerical solution of (10) with a step change in u (F = 200, α = 4, T = 0.001 s).
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Figure 11: Tracking performances of the proposed filter (21), BWF and ESDS-BE (T = 0.001 s).

i.e., algorithm (22). Here, the input u is a sinusoidal signal starting from u = 0 at t = 0 s, and the initial

states of all filters are zeros at t = 0 s. Fig. 11 only shows the data after t = 3 s, where the outputs

are in the steady state. It is observed that, ESDS-BE produces the largest phase lag among the three

filters, and BWF produces larger phase lag than the propose filter.

4 Experiments

The proposed filter (21) was experimentally tested by using data from an ultrasonic sensor and an optical

encoder. The output of the proposed filter was compared with those of the second-order Butterworth

low-pass filter (BWF), ESDS implemented with FCM (ESDS-FCM), and ESDS implemented with the
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Figure 12: Experimental setups.

backward Euler method (ESDS-BE), i.e., algorithm (22).

In both experiments, α and F of the proposed filter were chosen to make the output as smooth as

possible while restricting the phase lag in an acceptable range. In BWF, its cutoff frequency was chosen

to make its output as close as possible to that of the proposed filter. The parameter F of ESDS-FCM

and ESDS-BE was chosen equal to that of the proposed filter.

4.1 Ultrasonic sensor

In the first set of experiments, an ultrasonic sensor system (transmitter: PT40-18, receiver: PR40-18,

Nippon Ceramic Co., Ltd.) was fixed on a desk, and the distance between the sensor and the arc-shaped

back of a chair was measured as shown in Fig. 12(a).

First, the chair was in its initial position, and then it was moved toward the desk slowly. This motion

was performed twice with two different configurations of the sensor system. Specifically, the system was

configured so that, when no reflection was detected within the sampling period T = 0.01 s, it recorded

the minimum value (0 cm) for the first motion, or the maximum value (80 cm) for the second motion.

These minimum and maximum values are the sources of impulsive noise in this experiment.

Fig. 13(a) shows the data obtained from the first motion, which is corrupted by negative impulsive

noise, and Fig. 14(a) shows the data obtained from the second motion, which is corrupted by positive

impulsive noise. Fig. 13(b) - Fig. 13(e) and Fig. 14(b) - Fig. 14(e) show the filtered outputs of the four

filters for the data obtained from the first and second motions, respectively. In each figure, the graphs

(b) to (d) are for comparing the proposed filter to conventional filters, and the graph (e) is for exhibiting

the effect of backward Euler discretization.

The figures show that, in the steady state, BWF produced the most oscillatory result among the four

filters, ESDS-FCM and ESDS-BE were less oscillatory, and the proposed filter was the least oscillatory.

It can also be seen that, in the transient period, overshoots were suppressed by using the proposed filter.

The advantage of using α > 1 instead of using α = 1 can be observed in Fig. 13(d) and Fig. 14(d), in

which the proposed filter produces smaller overshoots and oscillation. Fig. 13(e) and Fig. 14(e) show

that backward Euler method produced slightly smaller overshoots than FCM.

In the transient period (t = 0 s to 5 s) of Fig 13, it can be seen that the proposed filter exhibited
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(a) Input signal (negative impulsive noise).

(b) BWF vs proposed filter. (c) ESDS-FCM vs proposed filter.

(d) ESDS-BE vs proposed filter. (e) ESDS-FCM vs ESDS-BE.

Figure 13: Experiment by using an ultrasonic sensor (T = 0.01 s): the first motion.

slower convergence to the correct value (about 56 cm) than the ESDS filters did. This is because the

output x1 was attracted to the corrupted value (u = 0 cm) with ẍ1 = −αF < −F < 0 in the case of

the proposed filter while it was with ẍ1 = −F in the case of the ESDS filters. A similar behavior can

be observed in the early period of Fig 14, in which the output of the proposed filter stayed stationary

between the corrected and corrupted values while those of ESDS filters exhibited overshoots. Thus, it

should be noted that the proposed filter produces a biased output or slow convergence when the input

contains dense impulsive noise, although it is still advantageous over ESDS filters in that it is less prone

to overshoot and oscillation.

4.2 Optical Encoder

In the second set of experiments, a 6-DOF industrial manipulator (MOTOMAN-UPJ, Yaskawa Electric

Corporation) shown in Fig. 12(b) was used. The input signal provided to the filters was the angular

velocity signal (the numerical derivative of the angle signal) from the optical encoder attached to the
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(b) BWF vs proposed filter. (c) ESDS-FCM vs proposed filter.

(d) ESDS-BE vs proposed filter. (e) ESDS-FCM vs ESDS-BE.
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(a) Input signal (positive impulsive noise).

Figure 14: Experiment by using an ultrasonic sensor (T = 0.01 s): the second motion.

sixth joint of the manipulator. A smooth desired trajectory from 80 degree to −80 degree was provided

to a position controller [24] to control the angle of the joint. Fig. 15(a) shows the obtained angle signal,

and Fig. 15(b) shows the velocity signal obtained by the numerical differentiation. In Fig. 15(b), one can

observe that the signal was corrupted by high-frequency noise and there was an impulse at t = 1.554 s.

The filtered results are shown in Fig. 15(c) to Fig. 15(j), which are the enlarged views of Fig. 15(b).

The results in Fig. 15(c) to Fig. 15(f) show that BWF failed to remove the effect of the impulse,

whereas ESDS-FCM, ESDS-BE and the proposed filter succeeded. It is clear that, even in the case of

BWF, the effect of the impulse can be reduced by using a lower cutoff frequency, but it would cause larger

phase lag. Figs. 15(d)(e)(h)(i) show that the proposed filter tracks the input signal rather smoothly and

accurately compared to the ESDS filters. This can be attributed to the use of α > 1, which provides

smaller overshoot. The difference between ESDS-FCM and ESDS-BE is distinct in Figs. 15(f) and (j),

which implies the advantage of the use of backward Euler discretization.
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Figure 15: Experiment by using an encoder of an industrial manipulator (T = 0.001 s).
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5 Conclusion

In this paper, we have presented a quadratic sliding mode filter for removing impulsive noise and high-

frequency noise with producing smaller phase lag than linear filters. The proposed filter does not produce

chattering, and it is less prone to overshoot than previous quadratic sliding mode filters. In addition,

its algorithm is computationally inexpensive, and thus suitable for realtime applications. Experimental

results showed the effectiveness the proposed filter.

One issue that is not addressed here but remained as the future topic of research is to develop

guidelines for how to choose the the values of parameters F and α. As another issue, it is expected

that the proposed filter can be further extended for smoothing the first or higher order derivative of the

input signal.
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Appendix:

Proposition: The following two equations are equivalent to each other:

• z − y = gsgn(gsgn(a,−z, b), x− z, gsgn(c,−z, d)) and

• z − y = gsat(gsat(a,−y, b), x− y, gsat(c,−y, d))

where a ≤ b ≤ c ≤ d.

Proof:
z − y = gsgn(gsgn(a,−z, b), x− z, gsgn(c, − z, d))

⇔ (x− z < 0 ∧ ((z − y = a ∧ −z < 0) ∨ (z − y = b ∧ −z > 0) ∨ (z − y ∈ [a, b] ∧ −z = 0)))

∨ (x− z > 0 ∧ ((z − y = c ∧ −z < 0) ∨ (z − y = d ∧ −z > 0) ∨ (z − y ∈ [c, d] ∧ −z = 0)))

∨ (x− z = 0 ∧ ((z − y ∈ [a, c] ∧ −z < 0) ∨ (z − y ∈ [b, d] ∧ −z > 0) ∨ (z − y ∈ [a, d] ∧ −z = 0)))

⇔ (x− z < 0 ∧ ((z − y = a ∧ −y < a) ∨ (z − y = b ∧ −y > b) ∨ (z − y = −y ∧ −y ∈ [a, b])))

∨ (x− z > 0 ∧ ((z − y = c ∧ −y < c) ∨ (z − y = d ∧ −y > d) ∨ (z − y = −y ∧ −y ∈ [c, d])))

∨ (x− z = 0 ∧ ((z − y ∈ [a, c] ∧ −z < 0) ∨ (z − y ∈ [b, d] ∧ −z > 0) ∨ (z − y ∈ [a, d] ∧ −z = 0)))

⇔ (x− z < 0 ∧ z − y = gsat(a,−y, b))

∨ (x− z > 0 ∧ z − y = gsat(c,−y, d))

∨ (x− z = 0 ∧ ((z − y ∈ [a, c] ∧ −z < 0) ∨ (z − y ∈ [b, d] ∧ −z > 0) ∨ (z − y ∈ [a, d] ∧ −z = 0)))

⇔ (z − y = gsat(a,−y, b) ∧ x− y < gsat(a,−y, b))

∨ (z − y = gsat(c,−y, d) ∧ x− y > gsat(c,−y, d))

∨ (z − y = x− y ∧ ((x− y ∈ [a, c] ∧ x > 0) ∨ (x− y ∈ [b, d] ∧ x < 0) ∨ (x− y ∈ [a, d] ∧ x = 0)))

⇔ (z − y = gsat(a,−y, b) ∧ x− y < gsat(a,−y, b))

∨ (z − y = gsat(c,−y, d) ∧ x− y > gsat(c,−y, d))

∨ (z − y = x− y ∧ x− y ∈ ([a, c] ∩ [−y,∞)) ∪ ([b, d] ∩ (−∞,−y]) ∪ ([a, d] ∩ [−y,−y]))

⇔ (z − y = gsat(a,−y, b) ∧ x− y < gsat(a,−y, b))

∨ (z − y = gsat(c,−y, d) ∧ x− y > gsat(c,−y, d))

∨ (z − y = x− y ∧ x− y ∈ [max(a,−y), c] ∪ [b,min(d,−y)] ∪ [max(a,−y),min(d,−y)])

⇔ (z − y = gsat(a,−y, b) ∧ x− y < gsat(a,−y, b))

∨ (z − y = gsat(c,−y, d) ∧ x− y > gsat(c,−y, d))

∨ (z − y = x− y ∧ x− y ∈ [min(b,max(a,−y)),max(c,min(d,−y))])

⇔ (z − y = gsat(a,−y, b) ∧ x− y < gsat(a,−y, b))

∨ (z − y = gsat(c,−y, d) ∧ x− y > gsat(c,−y, d))

∨ (z − y = x− y ∧ x− y ∈ [gsat(a,−y, b), gsat(c,−y, d)])

⇔ z − y = gsat(gsat(a,−y, b), x− y, gsat(c,−y, d)) (23)
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